BLOG DO ENG. ARMANDO CAVERO MIRANDA -BRASIL


MACHUPICHU MARAVILHA DO MUNDO

"Two things are infinite: the universe and human stupidity; and I'm not sure about the the universe." ALBERT EINSTEIN - “SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.” "MATH IS POWER TO CHANGE THE WORLD AND THE KEY TO THE FUTURE" 'OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS E GUARDANOS DE TODO MAL"

quinta-feira, 23 de agosto de 2012

PROBLEMS Bangladesh Mathematical Olympiad (BdMO) INDIA

LINK OF PROBLEMS Bangladesh Mathematical Olympiad (BdMO).http://www.mediafire.com/?46eqvc4et3rbml1
WEBSITE ORIGINAL DE LAS OLIMPIADAS DE MATEMATICAS BANGLADESH INDIA EN IDIOMAS INGLES E HINDU
http://www.matholympiad.org.bd/
ESPERO QUE ESTOS EJERCICIOS SEAN UTILES A LOS ESTUDIANTES DO BRASIL,PERU E DE TODO MUNDO,BOM TRABALHO E SUCESO.

domingo, 19 de agosto de 2012

RESULTADOS EXAMEN ADMISION UNIVERSIDAD NACIONAL INGENIERIA LIMA PERU

TOMANDO COMO FUENTE EL BLOG AMIGO E PARCEIRO MATEMATICAS Y OLIMPIADAS
http://www.matematicasyolimpiadas.com/

 ALUMNO POSTULANTE PRIMER PUESTO COMPUTO GENERAL DE LA UNI 2012-2
Felicitaciones al olímpico Warton Cordero Miguel Alejandro por ocupar el primer puesto cómputo general de la UNI, hace unas semanas formó parte de la selección que nos representó en la Olimpiada Internacional de  matemáticas 2012 (IMO) realizado en Argentina, obteniendo la medalla de Bronce para el  Perú. 

Advanced Mathematics for Engineers Lecture No. 5

2012 Colorado Math Olympiad : Solutions and Lecture

The New Academic Structure, A New Era (in English)

EXCELENTE FORUM SOBRE LAS NUEVAS ESTRUCTURAS ACADEMICAS EN LA EDUCACION REALIZADO EN HONG KONG ,PARTICIPACION DE PROFESORES,CIENTIFICOS,INGENIEROS,ESTUDIANTES.

quinta-feira, 16 de agosto de 2012

LEARNING MATHEMATICS IN SECONDARY SCHOOL: THE CASE OF MATHEMATICAL MODELLING ENABLED BY TECHNOLOGY

LEARNING MATHEMATICS IN SECONDARY SCHOOL:
THE CASE OF MATHEMATICAL MODELLING ENABLED BY
TECHNOLOGY
Jonaki B Ghosh
Lady Shri Ram College for Women, University of Delhi, New Delhi, India
jonakibghosh@gmail.com
http://www.mediafire.com/?3r8j812if2xa89c


INTEGRATION OF TECHNOLOGY INTO MATHEMATICS TEACHING: PAST, PRESENT AND FUTURE Adnan Baki Karadeniz Technical University, Fatih Education Faculty,TR

12th International Congress on Mathematical Education Program  8 July – 15 July, 2012,
 COEX, Seoul, Korea
INTEGRATION OF TECHNOLOGY INTO MATHEMATICS TEACHING: PAST, PRESENT AND FUTURE Adnan Baki Karadeniz Technical University, Fatih Education Faculty,TR abaki@ktu.edu.tr

 

KAIST Math Problem of the Week

SOURCE WEBSITE:
http://mathsci.kaist.ac.kr/pow/

Concluding 2012 Spring

Thanks all for participating POW actively. Here’s the list of winners:
  • 1st prize: Park, Minjae (박민재) – 2011학번
  • 2nd prize: Lee, Myeongjae  (이명재) – 2012학번
  • 3rd prize: Suh, Gee Won (서기원) – 수리과학과 2009학번
  • 4th prize: Cho, Junyoung (조준영) – 2012학번
  • 5th prize: Kim, Taeho (김태호) – 수리과학과 2011학번
Congratulations! As announced earlier, we have nicer prize this semester – iPad 16GB for the 1st prize, iPod Touch 32GB for the 2nd prize, etc.
KAIST Math Problem of the Week 2012 봄 시상식 박민재 이명재 서기원 조준영 김태호
Posted in annoncement | Tagged , , , , | 2 Comments

Solution: 2012-12 Big partial sum

Let A be a finite set of complex numbers. Prove that there exists a subset B of A such that
zBz1πzAz.
The best solution was submitted by Minjae Park (박민재), 2011학번. Congratulations!
Here is Solution of Problem 2012-12.
Two incorrect solutions were submitted (M.J.L., W.S.J.).
Posted in solution | Tagged | 1 Comment

Solution: 2012-11 Dividing a circle

Let f be a continuous function from [0,1] such that f([0,1]) is a circle. Prove that there exists two closed intervals I1,I2[0,1] such that I1I2 has at most one point, f(I1) and f(I2) are semicircles, and f(I1)f(I2) is a circle.
The best solution was submitted by Myeongjae Lee (이명재), 2012학번. Congratulations!
Here is his Solution of Problem 2012-11.
Alternative solution was submitted by 박민재(2011학번, +3). Two incorrect solutions were submitted (W.S.J., K.M.P.).
    Posted in solution | Tagged | Leave a comment

    2012-13 functions for an inequality

    Determine all nonnegative functions f(x,y) and g(x,y) such that
    (i=1naibi)2(i=1nf(ai,bi))(i=1ng(ai,bi))(i=1na2i)(i=1nb2i)
    for all reals ai, bi and all positive integers n.
    Rating: 4.5/5 (13 votes cast)
      Posted in problem | Tagged , , | Leave a comment

      2012-12 Big partial sum

      Let A be a finite set of complex numbers. Prove that there exists a subset B of A such that
      zBz1πzAz.
      Rating: 4.5/5 (14 votes cast)
        Posted in problem | Tagged , | 1 Comment

        Solution: 2012-10 Platonic solids

        Determine all Platonic solids that can be drawn with the property that all of its vertices are rational points.
        The best solution was submitted by Myeongjae Lee (이명재), 2012학번. Congratulations!
        Here is his Solution of Problem 2012-10.
        Alternative solutions were submitted by 박민재 (2011학번, +3, Solution), 정우석 (서강대학교 2011학번, +3), 박훈민 (대전과학고 2학년, +2). One incorrect solution was submitted (G.S.).

        Intro to Number Theory TA : Rakyong Choi Homework 12 1 Section 15.2


        http://www.mediafire.com/?dcv3g2j9dmw2vit

        PROBLEMS Elementary Number Theory

        http://www.mediafire.com/?s599plaob0dt092

        segunda-feira, 13 de agosto de 2012

        Math Problem Book I compiled by Kin Y. Li BOOK IMO HONG KONG

        SURFANDO EN LA INTERNET ENCONTRE ESTE HERMOSO LIBRO DE OLIMPIADAS DE MATEMATICAS HONG KONG
        Este libro es para los estudiantes que tienen las mentes creativas y están interesados ​​en
        las matemáticas. A través de la resolución de problemas,  van a aprender mucho más
        que los programas escolares y asi puedan afinar sus habilidades analíticas.
         La mayoría de los problemas se han utilizado en las sesiones de práctica para estudiantes
        participaron en el IMO HONG KONG.
        EL TEXTO COMPLETO LO PUEDES BAJAR EN LA SIGUIENTE DIRECCION EN LA WEB
        mediateca.rimed.cu/media/document/843.pdf

        quarta-feira, 1 de agosto de 2012

        The Indian Institutes of Technology ENTRANCE EXAMINATION 2012



        The Indian Institutes of Technology (popularly known as IITs) are institutions of national importance established through an Act of Parliament for fostering excellence in education. There are fifteen IITs at present, located in Bhubaneswar, Chennai, Delhi, Gandhinagar, Guwahati, Hyderabad, Indore, Jodhpur, Kanpur, Kharagpur, Mandi, Mumbai, Patna, Ropar and Roorkee. Over the years IITs have created world class educational platforms dynamically sustained through internationally recognized research based on excellent infrastructural facilities. The faculty and alumni of IITs continue making huge impact in all sectors of society, both in India and abroad. Institute of Technology, Banaras Hindu University (IT-BHU), Varanasi and Indian School of Mines (ISM), Dhanbad, are amongst the oldest institutions in India and are known for their immense contributions towards society at large and for science and technology in particular.

        http://www.jee.iitk.ac.in/