BLOG DO ENG. ARMANDO CAVERO MIRANDA -BRASIL


MACHUPICHU MARAVILHA DO MUNDO

"Two things are infinite: the universe and human stupidity; and I'm not sure about the the universe." ALBERT EINSTEIN - “SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.” "MATH IS POWER TO CHANGE THE WORLD AND THE KEY TO THE FUTURE" 'OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS E GUARDANOS DE TODO MAL"

sexta-feira, 14 de abril de 2017

PRACTICA DE MATEMATICAS IV - FACULTAD DE INGENIERIA ELÉCTRICA Y ELECTRÓNICA-UNIVERSIDAD NACIONAL DE INGENIERIA -PERÚ


PRACTICA CALIFICADA DEL CURSO DE MATEMATICAS IV FACULTAD DE INGENIERIA ELÉCTRICA Y ELECTRÓNICA-UNIVERSIDAD NACIONAL DE INGENIERIA -PERÚ

COLABORACIÓN DEL INGENIERO PERUANO IVAN EDUARDO CASTILLO CASTILLA,MUCHAS GRACIAS POR SUS APORTES AL MUNDO ACADÉMICO.

Pogorelov – Analytical Geometry ( Погорелов - Аналитическая геометрия )


The present book, which is a course of lectures, treats the fundamentals of the method of analytic geometry as applied to the simplest geometric objects. It is designed for the university students majoring in physics and mathematics, This book was translated from the Russian by Leonid Levant and was first published by Mir Publishers in 1980.

LINK (ENGLISH VERSION)
https://mirtitles.org/2012/12/26/pogorelov-analytical-geometry/

 Погорелов - Аналитическая геометрия - (RUSSIAN VERSION)

LINK Погорелов - Аналитическая геометрия - (RUSSIAN VERSION) FORMAT DJVU
http://padabum.com/x.php?id=35616


Alexei V. POGORELOV (1919-2002) POGORELOV Aleksey Vasilevich is the outstandig mathematician of our country, the scientist renowned throughout the world, the academician of Academy of Sciences of Russia and Ukraine, the Honoured Scientist of Ukraine.

A.V. Pogorelov was born in 1919, March 3, in Korocha of Belgorod district (Russia). He graduated Kharkov University (1941) and N.E. Zhukowsky Air Force Academy (1945). His professional experience advanced from engineer-designer at TsAGI (1945). At the same time he attended the external post-graduate courses. A.V. Pogorelov defended the Candidate's thesis (1947) and the Doctor's thesis (1948). He was elected Corresponding Member of UkrSSR Academy of Sciences (1951), Corresponding Member of USSR Academy of Sciences and Academician of UkrSSR Academy of Sciences (1960). Since 1976, he is the Academician of USSR Academy of Sciences. He headed (i) the Chair of Geometry at Kharkov State University (1950-1959), (ii) Geometry Department of Institute of Mathematics at Kharkov State University (1947-1950), (iii) Geometry Department of Institute of Mathematics of Academy of Sciences of Ukraine (1959-1960) and (iv) Geometry Department at B.Verkin Institute for Low Temperature Physics&Engineering, Academy of Sciences of Ukraine (1960 -2002).


A.V. Pogorelov's textbooks
 1-Analytical Geometry (in English)This book was translated from the Russian by Leonid Levant .1980
 2. Lectures on differential geometry (in English).- Groningen, P. Noordhoff, 1957.- 172 p.; 2nd ed. 1967.  3. Lectures on analytic geometry (in Russian).- Kharkov : Universitetizdat, 1957.- 162 p.; 2nd ed. 1963.
 4. Lectures on the foundations of geometry (in English).- Groningen, P. Noordhoff, 1966.- 137 p.
 5. Analytical geometry (in Russian).- Moscow: Nauka,1968.-176 p.; 2nd ed. 1978.
 6. Differential geometry (in Russian).- Moscow: Nauka, 1969.- 176 p; 2nd ed. 1979.
 7. Foundations of geometry (in Russian).- Moscow: Nauka, 1969.- 152 p.; 2nd ed. 1979.
 8. Geometry (in Russian).- Manual for teachers.- Moscow: Prosveschenie, 1979.- 176 p.
 9. Geometry (in Russian).- Experimental text-book for comprehensive school.- Kiev: Radjanska shkola, 1980.- 224 p.
 10. Geometry 6-10 (in Russian).- Experimental text-book for secondary school.- Moscow: Prosveschenie, 1981.- 261 p.
 11. Geometry 6-10 (in Russian).- Manual for secondary school.- Moscow: Prosveschenie, 1982.- 288 p.; 2nd - 8th eds. 1983 -1989.
 12. Geometry (in English).- Manual for higher school, speciality "Mathematics".- Moscow: Mir Publishers, 1987.- 312 p.
 13. Geometry 7-11 (in Russian).- Text-book for secondary school.- Moscow: Prosveschenie,1990.-384 p.; 2nd. - 5th eds. 1991-1995.
 14. Geometry 7-9 (in Ukrainian).- Manual for secondary school.- Љiev: Osvita.- 1994.- 224 p.
 15. Geometry 10-11 (in Ukrainian).- Manual for secondary school.- Kiev: Osvita.- 1994.- 128 p.

GEOMETRY A. POGORELOV MOSCOW


LINK
https://pt.scribd.com/doc/170973756/MIR-Pogorelov-a-v-Geometry-1987

quinta-feira, 23 de março de 2017

sábado, 11 de março de 2017

Kaplan. Practical lessons in higher mathematics. Analytical geometry, differential calculus, integral calculus -967 PAGINAS-1967-PARTE1-PARTE2


Kaplan. Practical lessons in higher mathematics. Analytical geometry, differential calculus, integral calculus In 2-files in one archive. General 925 pages. Djvu. 6.9 MB. Examples of solving problems on the whole course of general mathematics are considered.

Каплан. Практические занятия по высшей математике. Аналитическая геометрия, диффернциальное исчисление, интегральное исчисление, интегрирование дифуравнений. В 2-файлах в одном архиве. Общие 925 стр. djvu. 6.9 Мб.
Рассмотрены примеры решения задач по всему курсу общей математики.

LINK ORIGINAL EN LA WEB ( COMPRIMIDO  2 ARCHIVOS EN FORMATO DJVU)
http://www.ph4s.ru/books/book_mat/matan/kaplan.rar
LINK ALTERNATIVO
http://www.mediafire.com/file/k9kd1qkdh5a915a/kaplan.rar

Trigonometric Functions - Problem Solving Approach by A. Panchishkin, E. Shavgulidze




LINK ORIGINAL EN LA WEB
https://archive.org/details/TrigonometricFunctions-ProblemSolvingApproach

 Trigonometric Functions - Problem Solving Approach by A. Panchishkin, E. Shavgulidze

This study aid is to help the student to master the basic techniques of solving difficult problems in trigonometry. The book contains theoretical material, many worked competition problems, and some problems to be solved independently (the answers being at end of the book.) Intended for high-school and precollege students.

LINK
https://archive.org/download/TrigonometricFunctions-ProblemSolvingApproach/Trigonometric-Functions-Problem-Solving-Approach.pdf

Vinogradova IA Problems and exercises in mathematical analysis (part 1)-Виноградова И. А. и др. Задачи и упражнения по математическому анализу (часть1).




LINK RUSSIAN VERSION 
http://www.mediafire.com/file/65uw3y6hltm3p56/Vinogradova-Problems_and_exercises_in_mathematical_analysis_%28part_1%29.pdf

sexta-feira, 10 de março de 2017

Selected Problems In Physics by Shaskol’skaya and El’tsin - Шаскольская, И.А. Эльцин "Сборник избранных задач по физике"


LINK ORIGINAL EN LA WEB
https://archive.org/details/SelectedProblemsInPhysics-ShaskolskayaAndEltsin

 

 LINK DIRECTO
https://archive.org/download/SelectedProblemsInPhysics-ShaskolskayaAndEltsin/Selected%20Problems%20in%20Physics%20%E2%80%93%20Shaskol%E2%80%99skaya%20and%20El%E2%80%99tsin.pdf

LINK ALTERNATIVO
http://www.mediafire.com/file/65cgp54862ra3pd/Selected_Problems_in_Physics_%E2%80%93_Shaskol%E2%80%99skaya_and_El%E2%80%99tsin.pdf

The present collection of problems is a further development and revision of our book Selected Physics Problems, which was published in 1949 and was soon sold out. The basis of our earlier book was formed’ by problems set over a number of years in the “Olympic” examinations set in Physics .to schoolchildren. by the Physics Faculty of the Lomonosov State University in Moscow. A large number of teachers and a number of the students of the Physics Faculty of the Moscow State University took part in composing and selecting the. “Olympic” problems. What’s special about the book is that the solutions offered are not cryptic and do not rely solely on “formulas”/”recipes” but are in a discussion form. The authors try to convey their reasoning to the reader and only after convincing the reader do they write equations. Thus the book presents a very conceptual and process-oriented approach to understanding physics through solving insightful problems.

М.П. Шаскольская, И.А. Эльцин "Сборник избранных задач по физике"

LINK
http://www.mediafire.com/file/pncepnmm0v54z00/Shaskolskaya_%281%29.pdf


terça-feira, 28 de fevereiro de 2017

Lecture 1 | An introduction to Toeplitz determinants | Николай Никольский | Лекториум



Lecture 1 | Курс: Workshop and Winter School «Spaces of Analytic Functions and Singular Integrals (SAFSI2014)» | Лектор: Николай Никольский | Организатор: Математическая лаборатория имени П.Л.Чебышева Смотрите это видео на Лекториуме: https://lektorium.tv/lecture/25596 Подписывайтесь на канал: https://www.lektorium.tv/ZJA Следите за новостями: https://vk.com/openlektorium https://www.facebook.com/openlektorium