segunda-feira, 30 de dezembro de 2019
Problems In Elementary Mathematics For Home Study by N. Antonov; M. Vygodsky; V. Nikitin; A. Sankin
LINKS
1) https://mirtitles.org/2018/05/24/problems-in-elementary-mathematics-for-home-study-antonov-vygodsky-nikitin-sankin/
2) https://archive.org/download/AntonovVygodskyNikitinSankinProblemsInElementaryMathematicsForHomeStudyMir1982/Antonov-Vygodsky-Nikitin-Sankin-Problems-in-Elementary-Mathematics-for-Home-Study-Mir-1982.pdf
3)https://www.mediafire.com/file/1nuhpicn4lv7m1v/Antonov-Vygodsky-Nikitin-Sankin-Problems-in-Elementary-Mathematics.pdf/file
Vector Analysis by M.L. Krasnov; A.I. Kiselev; G.I. Makarenko.
Vector Analysis by M.L. Krasnov; A.I. Kiselev; G.I. Makarenko.
The present collection of problems in vector analysis contains the required minimum of problems and exercises for the course of vector analysis of engineering colleges. Each section starts with a brief review of theory and detailed solutions of a sufficient number of typical problems. The text contains 100 worked problems and there are 314 problems left to the student. There are also a certain number of problems of an applied nature that have been chosen so that their analysis does not require supplementary information in specialized fields. The material of the sixth chapter is devoted to curvilinear coordinates and the basic operations of vector analysis in curvilinear coordinates. Its purpose is to give the reader at least a few problems to develop the necessary skills. The exposition in this text follows closely the lines currently employed at the chair of higher mathematics of the Moscow Power Institute.
LINKS EN LA WEB
1) https://archive.org/download/KrasnovKiselievMakarenkoVectorAnalysisMir1983/Krasnov-Kiseliev-Makarenko-Vector-Analysis-Mir-1983.pdf
2)https://download.tuxfamily.org/openmathdep/calculus_advanced/Vector_Analysis-Krasnov.pdf
3)https://www.mediafire.com/file/2xh4k6f3qpctm13/Krasnov-Kiseliev-Makarenko-Vector-Analysis.pdf/file
4)https://mirtitles.org/2018/05/18/vector-aanalysis-krasnov-kiselev-makarenko/
segunda-feira, 16 de dezembro de 2019
PERU ARGENTINA E BRASIL BRILHAM NA 28ª Olimpíada Matemática Rioplatense 7 A 12 DEZEMBRO 2019
El peruano Mijaíl Gutiérrez Bustamante, consiguió un puntaje perfecto durante Olimpiada Rioplatense de Matemática (OMR), llevada a cabo en Argentina.
PEDRO GOMES CABRAL MEDALHA DE OURO BRASIL
IGNACIO NAGUIL MEDALHA DE OURO ARGENTINA
Premiacion OMR2019 OLIMPIADA RIOPLATENSE DE MATEMATICA 2019
LINK RESULTADOS 28ª Olimpíada Matemática Rioplatense 7 A 12 DEZEMBRO 2019
http://www.oma.org.ar/internacional/resultados-omr28.html
PEDRO GOMES CABRAL MEDALHA DE OURO BRASIL
IGNACIO NAGUIL MEDALHA DE OURO ARGENTINA
Premiacion OMR2019 OLIMPIADA RIOPLATENSE DE MATEMATICA 2019
http://www.oma.org.ar/internacional/resultados-omr28.html
domingo, 15 de dezembro de 2019
Vavilov V.V., Melnikov I.I., Olejnik S.N., Pasichenko P.I. Problemas de matemáticas. Ecuaciones y desigualdades-Задачи по математике, уравнения и неравенства, справочное пособие, Вавилов В.В., Мельников И.И., Олехник С.Н., Пасиченко П.И., 1988
sábado, 14 de dezembro de 2019
Vol. 40. S. B. Gashkov. Centro de gravedad y geometría.-Вып. 40. С. Б. Гашков. Центр тяжести и геометрия
El folleto habla sobre métodos para calcular los centros de gravedad de varias formas geométricas: triángulos, polígonos, tetraedros, etc.
Para una amplia gama de lectores interesados en las matemáticas: estudiantes de secundaria, estudiantes, profesores.
LINK: https://www.mccme.ru/mmmf-lectures/books/books/book.40.pdf
LINK: https://www.mccme.ru/mmmf-lectures/books/books/book.40.pdf
Вып. 8. В. В. Острик, М. А. Цфасман. Алгебраическая геометрия и теория чисел: рациональные и эллиптические кривые-Vol. 8. V.V. Ostrik, M.A. Tsfasman. Algebraic geometry and number theory: rational and elliptic curves.
Вып. 8. В. В. Острик, М. А. Цфасман. Алгебраическая геометрия и теория чисел: рациональные и эллиптические кривые-Vol. 8. V.V. Ostrik, M.A. Tsfasman. Algebraic geometry and number theory: rational and elliptic curves.
Many natural questions from number theory are beautifully solved by geometric methods, more precisely, by the methods of algebraic geometry, a field of mathematics that studies curves, surfaces, etc., given by systems of polynomial equations. In the book, this is shown by the example of several beautiful problems of number theory related to the Pythagorean theorem.
LINK:https://www.mccme.ru/mmmf-lectures/books/books/book.8.pdf
segunda-feira, 9 de dezembro de 2019
domingo, 8 de dezembro de 2019
EQUIPO DE PERU QUE PARTICIPARA EN LA 28ª Olimpiada Matemática Rioplatense-ARGENTINA
Este es el equipo peruano que viaja a Buenos Aires a participar en la 28ª Olimpiada Matemática Rioplatense, la última competencia internacional del año. La delegación está formada por estudiantes del Callao, Cañete, Chiclayo, Ica, Lima, Trujillo y San Martín. Éxitos!
PROF. Jesus Zapata Samanez
TWITTER: @jesus_zs
https://twitter.com/jesus_zs/status/1203510299396935682
XV GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN
XV GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN
The correspondence round Below is the list of problems for the first (correspondence) round of the XV Sharygin Geometrical Olympiad.
The olympiad is intended for high-school students of four eldest grades. In Russian school, these are 8-11. In the list below, each problem is indicated by the numbers of Russian school grades, for which it is intended. Foreign students of the last grade have to solve the problems for 11th grade, students of the preceding grade solve the problems for 10th grade etc. However, the participants may solve problems for elder grades as well (solutions of problems for younger grades will not be considered). A complete solution of each problem costs 7 points. A partial solution costs from 1 to 6 points. A text without significant advancement costs 0 points. The result of a participant is the sum of all obtained marks. First write down the statement of the problem, and then the solution. Present your solutions in detail, including all necessary arguments and calculations. Provide all necessary figures of sufficient size. If a problem has an explicit answer, this answer must be presented distinctly. Please, be accurate to provide good understanding and correct estimating of your work ! If your solution depends on some well-known theorems from standard textbooks, you may simply refer to them instead of providing their proofs. However, any fact not from the standard curriculum should be either proved or properly referred (with an indication of the source). You may note the problems which you liked most (this is not obligatory). Your opinion is interesting for the Jury. The solutions for the problems (in Russian or in English) must be delivered not before December 1, 2018 and not later than on March 1, 2019. To upload your work, enter the site https://contest.yandex.ru/geomshar/, indicate the language (English) in the right upper part of the page, press "Registration"in the left upper part, and follow the instructions. Attention: 1. The solution of each problem (and of each part of it if any) must be contained in a separate pdf, doc, docx or jpg file. If the solution is contained in several files then pack them to an archive (zip or rar) and load it. 2.We recommend to prepare the paper using computer or to scan it rather than to photograph it. In all cases, please check readability of the file before uploading. 3. If you upload the solution of some problem more than once then only the last version is retained in the checking system. Thus if you need to change something in your solution then you have to upload the whole solution again. If you have any technical problems with uploading of the work, apply to geomshar@yandex.ru (DON’T SEND your work to this address). The final round will be held in July–August 2019 in Moscow region. The winners of the correspondence round are invited to it if they don’t graduate from school before. (For instance, if the last grade is 12 then we invite winners from 9–11 grades, and from 12 grade if they finish their school education later.) The graduates, winners of the correspondence round, will be awarded by diplomas of the Olympiad. The list of the winners will be published on www.geometry.ru at the end of May 2019 at latest.
If you want to know your detailed results, please use e-mail geomshar@yandex.ru.
LINK https://drive.google.com/file/d/1V3_aWsHQMiqDtXQi4ejv3SCDatm6bOry/view
LINK PRINCIPAL WEBSITE
https://imogeometry.blogspot.com/p/sharygin-geometry-olympiad.html
Assinar:
Postagens (Atom)