BLOG DO ENG. ARMANDO CAVERO MIRANDA -BRASIL


MACHUPICHU MARAVILHA DO MUNDO

"Two things are infinite: the universe and human stupidity; and I'm not sure about the the universe." ALBERT EINSTEIN - “SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.” "MATH IS POWER TO CHANGE THE WORLD AND THE KEY TO THE FUTURE" 'OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS E GUARDANOS DE TODO MAL"

quinta-feira, 19 de julho de 2018

COLECCION DE PROBLEMAS DE MATEMATICAS ELEMENTALES DE MAYOR DIFICULTAD- Konstantin Ustinovich Shahno -1965









Una colección de problemas en matemáticas elementales de mayor dificultad. 
AUTOR
: Konstantin Ustinovich Shahno
EDITORIAL MINSK -1965

 La segunda edición, ( 1965) La colección contiene más de mil problemas en matemáticas elementales, principalmente de mayor dificultad. Las tareas, si es posible, se sistematizan y se proporcionan soluciones. En algunos casos, en relación con la solución del problema y, cuando corresponda, se dan preguntas sobre la teoría. A veces están predeterminados por la solución de un grupo de problemas unidos por una idea común. Se dan explicaciones sobre la teoría de ecuaciones, la construcción de gráficos, números complejos, funciones trigonométricas inversas, inducción matemática, y algunas otras preguntas. El compendio está diseñado para personas que se graduaron en la  escuela secundaria y que desean continuar mejorando sus métodos para resolver problemas o prepararse para una universidad.

LINK
http://www.mediafire.com/file/7wbtq62291yyme1/COLECCION_PROBLEMAS_MATEMATICAS_ELEMENTALES.pdf/file

Bronstein, Semendyaev. Un manual sobre matemáticas para ingenieros-1986- Бронштейн И.Н., Семендяев К.А. (1986) Справочник по математике для инженеров и учащихся втузов



LINK1: http://www.mediafire.com/file/kocuv9okigkhlcc/BRONSTEIN%20MANUAL%20DE%20INGENIEROS.pdf


terça-feira, 17 de julho de 2018

SEMINAR Novel Methods in Control & Monitoring of Photovoltaic Systems-Dr. Mohammadreza Aghaei





In this research, several experimental tests have been designed and performed to examine the quality, accuracy, robustness, reliability, capability and flexibility of different parts of the proposed automatic control system in real and large-scale PV plants. The preliminary results have proven that automating the procedure of PV plants inspection is very promising, being practical, precise and much faster than traditional monitoring methods.

 About Dr. Mohammadreza Aghaei Mohammadreza Aghaei has completed his Bachelor degree in Electronics Engineering in 2009 and studied Master of Business Administration (MBA - Project Management). He received the M.S. degree in Electronics Engineering (Solar Cells) from Tenaga Nasional Universiti, Malaysia in 2013 and the Ph.D degree in Electrical Engineering (PV modules and systems) from Politecnico di Milano, Italy in 2016.

segunda-feira, 16 de julho de 2018

Primeiro webinário da SOBRAEP– Associação Brasileira de Eletrônica de Potência-Conversores de Energia a Capacitor Chaveado-Prof. Ivo Barbi-03/08/2018 (sexta-feira) - 14 horas


Primeiro webinário da SOBRAEP– Associação Brasileira de Eletrônica de Potência
O primeiro webinário da SOBRAEP terá o tema Conversores de Energia a Capacitor Chaveado e será apresentado pelo Prof. Ivo Barbi no dia 03/08/2018 (sexta-feira) – 14 horas. O Prof. Ivo Barbi tem como uma das grandes conquistas a fundação da SOBRAEP no início da década 1990. O webinário será transmitido a partir do canal da SOBRAEP no Youtube (SOBRAEP ORG) e o acesso a transmissão pode ser feito de duas formas:

1) A partir do site da SOBRAEP (https://www.sobraep.org.br/), em PRÓXIMOS WEBINARS no botão REGISTRE-SE AQUI;
2) A partir do link direto para a transmissão https://www.youtube.com/watch?v=1Jtw4QM-Mvw.

Conversores de Energia a Capacitor Chaveado-Prof. Ivo Barbi-QUANDO-03/08/2018 (sexta-feira) - 14 horas

Japanpedia Video - Japanese Pythagoras Switch- PURA ENGENHARIA




Este increíble clip de Pythagora Switch / Pitagora Suitchi se lanza con un servicio de tenis de mesa y despega en cadena de reacciones y maravillas de ingeniería de mesa. Vea pelotas de ping pong, rollos de cinta, canicas y bolas de metal que ruedan y rebotan en una miríada de pistas de madera configuradas con palancas, planos inclinados, poleas, ventiladores, imanes y más mientras alguien exclama "¡hai!" (¡Sí!), "¡Gambare!" (¡Haz lo mejor que puedas!), "¡Yatta!" (¡Hurra!) Y otros aplausos entusiastas. Es muy épico

UM EXCELENTE EXEMPLO CRIATIVO DE APRENDER FISICA EXPERIMENTALMENTE AS LEIS DE PITAGORAS,LEIS DA CINEMATICA,ESTATICA,DINAMICA,PURA ENGENHARIA.

sexta-feira, 13 de julho de 2018

U.S. Wins Romanian Master of Mathematics Competition 59th International Mathematical Olympiad (IMO) which took place in Cluj-Napoca, Romania on July 3-14, 2018








WASHINGTON, DC - The U.S. team won first place for the third time in four years at the 59th International Mathematical Olympiad (IMO) which took place in Cluj-Napoca, Romania on July 3-14, 2018, with 116 countries participating. Prior to a fourth place finish in 2017, the U.S. IMO team won first place in 2015 and 2016 in the prestigious international competition. In 2018, the International Mathematical Olympiad brought together the top math students from around the world with 615 student competitors. The six U.S. team members also took home five gold medals and one silver medal for their individual high scores in the competition, known as the olympics of mathematics competitions for high school students. The first place U.S. team score was 212 out of a possible 252 points.
The teams from Russia and China took second and third place respectively in cumulative team scores. The 2018 U.S. International Mathematical Olympiad team is: Adam Ardeishar, Andrew Gu, Vincent Huang, James Lin, Michael Ren, and Mihir Singhal. Gu, Huang, and Lin are returning team members from 2017 and Lin earned a perfect score.
LINK:https://www.maa.org/news/team-usa-returns-to-first-place-in-olympics-of-high-school-math?utm_source=website&utm_medium=homepage&utm_campaign=AMC

USA---------POSITION 1
RUSSSIA---POSITION 2
CHINA------POSITION 3

BRAZIL------   POSITION 28
GERMANY----POSITION 31
FRANCE-------POSITION 33
PERU-----------POSITION  35
MEXICO-------POSITION 36
ARGENTINA-POSITION 39
COLOMBIA --POSITION 66
BOLIVIA------POSITION  81
CHILE ---------POSITION 91
PARAGUAY---POSITION 95



LINK RESULTS
http://imo-official.org/results.aspx

domingo, 8 de julho de 2018

59TH INTERNATIONAL MATHEMATICAL OLYMPIAD CLUJ-NAPOCA - ROMANIA, 03 - 14 JULY 2018





ABOUT IMO
 The International Mathematical Olympiad (IMO) is the largest, oldest and most prestigious scientific Olympiad for high school students. The history of IMO dates back to 1959, when the first edition was held in Romania with seven countries participating: Romania, Hungary, Bulgaria, Poland, Czechoslovakia, East Germany, and USSR. Since then, the event has been held every year (except 1980) in a different country. Currently, more than 100 countries from 5 continents participate. Each country can send a team of up to six secondary students or individuals who have not entered University or the equivalent, as of the date of celebration of the Olympiad, plus one team leader, one deputy leader, and observers if desired. During the competition, contestants have to solve, individually, two contest papers on two consecutive days, with three problems each day. Each problem is worth seven points. Gold, silver, and bronze medals are awarded in the ratio of 1:2:3 according to the overall results — half of the contestants receive a medal. In order to encourage as many students as possible to solve complete problems, certificates of honorable mention are awarded to students (not receiving a medal) who obtained 7 points for at least one problem.


domingo, 24 de junho de 2018

Course of Mathematical Analysis, Part 1, Vinogradov OL, Gromov - Курс математического анализа, Часть 1, Виноградов О.Л., Громов А.Л., 2009.


Course of Mathematical Analysis, Part 1, Vinogradov OL, Gromov AL, 2009
 The book is the first part of the course of mathematical analysis, read at the Faculty of Mathematics and Mechanics of the St. Petersburg State University. The volume and content of the first part roughly corresponds to the material traditionally included in the first semester of a five-semester or four-semester (with a separate semester course of the theory of functions of a complex variable) course. It includes the following sections: introduction, the theory of limits and continuous functions, the differential calculus of functions of one real variable, an indefinite integral.
LINK
http://www.mediafire.com/file/f0k9igg556qjp59/vinogradov-part1.pdf