ALBERT EINSTEIN

ALBERT EINSTEIN

SUA DOAÇÃO VIA PIX AJUDA A FINANCIAR PESQUISAS EM MATEMATICAS AGRADECEMOS QUALQUER VALOR OBRIGADO

SUA DOAÇÃO VIA PIX AJUDA A FINANCIAR PESQUISAS EM MATEMATICAS AGRADECEMOS QUALQUER VALOR OBRIGADO
JUNTOS PODEMOS FAZER UMA NOVA GERAÇÃO DE JOVENS CAMPEÔES OLIMPICOS DE MATEMATICA

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"

Matematicas preuniversitarias,fisica preuniversitaria,algebra,geometria,trigonometria
mathematics,physics,geometry,Математика,College,Pre-College,vestibular universidades,olimpiadas de matematicas,Mathematical Olympiad,Algebra Problems,Geometry Problems,High School Geometry,Trigonometry Problems,Descriptive Geometry,Problems In Calculus Of One Variable,ECUACIONES DIFERENCIALES,problemas de fisica,Problems On Physics,Linear Algebra,Problems In Elementary Mathematics,Inequalities,Mathematics for high school students,EXAMENS DE ADMISION ALGEBRA.
   

https://picasion.com/
https://picasion.com/

BLOG DO ENG. ARMANDO CAVERO MIRANDA -BRASIL


sábado, 26 de junho de 2021

Матвей Семенович Мацкин Роза Юдовна Мацкина Функции и пределы. Производная ПОСОБИЕ ДЛЯ УЧИТЕЛЕЙ-Matvey Semenovich Matskin Roza Yudovna Matskina Functions and limits. Derivative






 CONTENTS

Introduction 3 
Section I. FUNCTIONS AND LIMITS
 Chapter 1. Repetition and deepening of basic information about functions and properties of functions 6 § 1. Repetition of the concept of a function. Function graph. General notation of a function 6
 § 2. Monotone functions. Increase and decrease of a function on a given interval. The concept of the maximum and minimum of a function 11
 § 3. Even and odd functions. Top-bounded and bottom-bounded functions. Limited features. Periodic functions. Scheme of investigation of a function 15 

 Chapter 2. Inverse functions 23 
 § 1. The concept of an inverse function. Graph of an inverse function 23
 § 2. Properties of inverse functions 27 § 3. Inverse trigonometric functions 31 

 Chapter 3. Limit of a function 34 § 1. Limit of the function f (x) as u oo 36
 § 2. Limit of the function f (x) as x - a (a is a real number) 48
 § 3. Limit of the ratio of the sine to the argument when the argument tends to zero 56 
 § 4. Theorems on limits 61
 § 5. The concept of continuity of a function 67

 Section II. THE DERIVATIVE AND ITS APPLICATION 
 Chapter 4. The concept of the derivative. Calculation of the derivative. Application of the derivative to the solution of physical and other problems 75 
 § 1. The speed of rectilinear motion. The concept of a derivative 76
 § 2. Theorems on derivatives. Derivatives of some elementary functions 82 
 § 3. Physical and other examples of the use of the derivative Acceleration. The concept of the second derivative 101 

 Chapter 5. Geometric meaning of the derivative. Exploring functions using a derivative. Solving problems related to finding the largest and smallest values ​​of functions. Newton binomial formula 112
 § 1. Geometric meaning of the derivative 113 
 § 2. Study of functions for increasing and decreasing and finding the maximum and minimum points of functions using the derivative 125
 § 3. Study of functions using the derivative and the construction of their graphs. Graphical solution of equations 140
 § 4. Problems of finding the maximum and minimum values ​​of functions 163 § 5. Derivation of the Newton binomial formula and its application to approximate calculations 171

domingo, 13 de junho de 2021

A Collection of Problems on a Course of Mathematical Analysis Por G. N. Berman ( VERSION ENGLISH,RUSSIAN)


 GOOGLE LIVROS PREVIEW

  


 LINK ENGLISH VERSION :https://br1lib.org/dl/2568938/0f5697

Сборник задач по курсу математического анализа. Берман Г.Н.-2016 (RUSSIAN VERSION)