ALBERT EINSTEIN

ALBERT EINSTEIN

"GRAÇAS A DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"

Matematicas preuniversitarias,fisica preuniversitaria,algebra,geometria,trigonometria
mathematics,physics,geometry,Математика,College,Pre-College,vestibular universidades,olimpiadas de matematicas,Mathematical Olympiad,Algebra Problems,Geometry Problems,High School Geometry,Trigonometry Problems,Descriptive Geometry,Problems In Calculus Of One Variable,ECUACIONES DIFERENCIALES,problemas de fisica,Problems On Physics,Linear Algebra,Problems In Elementary Mathematics,Inequalities,Mathematics for high school students,EXAMENS DE ADMISION ALGEBRA.
   

https://picasion.com/
https://picasion.com/

BLOG DO ENG. ARMANDO CAVERO MIRANDA -BRASIL


quarta-feira, 5 de junho de 2013

VOD VIDEOS THE MATHNET KOREA

KAIST Discrete Math Seminar
 Kim, Younjin (KAIST)  의 1 번째 Real Media 동영상입니다.
East Asia Number Theory Conference
 Xu Fei (Chinese Academy of Sciences)  의 1 번째 Real Media 동영상입니다.
ASARC Seminar
 Lee, Hwayoung (KIAS)  의 1 번째 Real Media 동영상입니다.
WEBSITESOURCE
http://vod.mathnet.or.kr/

Pensamiento matemático UNIVERSIDAD POLITECNICA DE MADRID


El Objetivo principal del proyecto es el diseño y realización de un nuevo concepto de taller educativo para alumnos de nuevo ingreso, con un doble propósito, mejorar los conocimientos del estudiante en las materias básicas y al mismo tiempo fomentar en el alumno de cursos superiores el deseo de compartir su bagaje intelectual con sus compañeros mediante una experiencia docente innovadora.
Video producido por el Gabinete de Tele-Educación de la Universidad Politécnica de Madrid.

XXIII Olimpiada de Matematicas Cono Sur (OMCS) 2012, Lima - Perú: proble...

terça-feira, 4 de junho de 2013

AlgTop8: Polyhedra and Euler's formula

FamousMathProbs12: Euclid's construction problems I


 Publicado em 17/04/2013 Euclid's treatise the Elements is easily the greatest mathematical text of all time. Book I lays out basics of planar geometry, with an alternation between theory and practice, where practice means solving explicit construction problems with straight-edge and compass. In this lecture we look at most of these problems, sometimes departing from Euclid's order and presentation, but not from his spirit.

FamousMathProbs13b: The rotation problem and Hamilton's discovery of qua...

FamousMathProbs13a: The rotation problem and Hamilton's discovery of qua...

MathHistory12: Non-Euclidean geometry



The development of non-Euclidean geometry is often presented as a high point of 19th century mathematics. The real story is more complicated, tinged with sadness, confusion and orthodoxy, that is reflected even the geometry studied today. The important insights of Gauss, Lobachevsky and Bolyai, along with later work of Beltrami, were the end result of a long and circuitous study of Euclid's parallel postulate. But an honest assessment must reveal that in fact non-Euclidean geometry had been well studied from two thousand years ago, since the geometry of the sphere had been a main concern for all astronomers.