"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"

Matematicas preuniversitarias,fisica preuniversitaria,algebra,geometria,trigonometria
mathematics,physics,geometry,Математика,College,Pre-College,vestibular universidades,olimpiadas de matematicas,Mathematical Olympiad,Algebra Problems,Geometry Problems,High School Geometry,Trigonometry Problems,Descriptive Geometry,Problems In Calculus Of One Variable,ECUACIONES DIFERENCIALES,problemas de fisica,Problems On Physics,Linear Algebra,Problems In Elementary Mathematics,Inequalities,Mathematics for high school students,EXAMENS DE ADMISION ALGEBRA.
   

https://picasion.com/
https://picasion.com/

BLOG DO ENG. ARMANDO CAVERO MIRANDA -BRASIL


quarta-feira, 6 de agosto de 2014

Borsuk's Conjecture Borsuk's problem

Borsuk conjectured that it is possible to cut an n-dimensional shape of generalized diameter 1 into n+1 pieces each with diameter smaller than the original. It is true for n=2, 3 and when the boundary is "smooth." However, the minimum number of pieces required has been shown to increase as ∼1.1^(sqrt(n)). Since 1.1^(sqrt(n))>n+1 at n=9162, the conjecture becomes false at high dimensions.
Kahn and Kalai (1993) found a counterexample in dimension 1326, Nilli (1994) a counterexample in dimension 946. Hinrichs and Richter (2003) showed that the conjecture is false for all n>297.
  Title: Borsuk's problem
     Author: Raigorodskii AM
     Format: PDF
     Size: 1.05 MB
     Year of Publication: 2006  

LINK
https://www.mediafire.com/?9v4892uf4w4q7ut

Nenhum comentário:

Postar um comentário