"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"

Matematicas preuniversitarias,fisica preuniversitaria,algebra,geometria,trigonometria
mathematics,physics,geometry,Математика,College,Pre-College,vestibular universidades,olimpiadas de matematicas,Mathematical Olympiad,Algebra Problems,Geometry Problems,High School Geometry,Trigonometry Problems,Descriptive Geometry,Problems In Calculus Of One Variable,ECUACIONES DIFERENCIALES,problemas de fisica,Problems On Physics,Linear Algebra,Problems In Elementary Mathematics,Inequalities,Mathematics for high school students,EXAMENS DE ADMISION ALGEBRA.
   

https://picasion.com/
https://picasion.com/

BLOG DO ENG. ARMANDO CAVERO MIRANDA -BRASIL


sexta-feira, 13 de julho de 2018

U.S. Wins Romanian Master of Mathematics Competition 59th International Mathematical Olympiad (IMO) which took place in Cluj-Napoca, Romania on July 3-14, 2018








WASHINGTON, DC - The U.S. team won first place for the third time in four years at the 59th International Mathematical Olympiad (IMO) which took place in Cluj-Napoca, Romania on July 3-14, 2018, with 116 countries participating. Prior to a fourth place finish in 2017, the U.S. IMO team won first place in 2015 and 2016 in the prestigious international competition. In 2018, the International Mathematical Olympiad brought together the top math students from around the world with 615 student competitors. The six U.S. team members also took home five gold medals and one silver medal for their individual high scores in the competition, known as the olympics of mathematics competitions for high school students. The first place U.S. team score was 212 out of a possible 252 points.
The teams from Russia and China took second and third place respectively in cumulative team scores. The 2018 U.S. International Mathematical Olympiad team is: Adam Ardeishar, Andrew Gu, Vincent Huang, James Lin, Michael Ren, and Mihir Singhal. Gu, Huang, and Lin are returning team members from 2017 and Lin earned a perfect score.
LINK:https://www.maa.org/news/team-usa-returns-to-first-place-in-olympics-of-high-school-math?utm_source=website&utm_medium=homepage&utm_campaign=AMC

USA---------POSITION 1
RUSSSIA---POSITION 2
CHINA------POSITION 3

BRAZIL------   POSITION 28
GERMANY----POSITION 31
FRANCE-------POSITION 33
PERU-----------POSITION  35
MEXICO-------POSITION 36
ARGENTINA-POSITION 39
COLOMBIA --POSITION 66
BOLIVIA------POSITION  81
CHILE ---------POSITION 91
PARAGUAY---POSITION 95



LINK RESULTS
http://imo-official.org/results.aspx

domingo, 8 de julho de 2018

59TH INTERNATIONAL MATHEMATICAL OLYMPIAD CLUJ-NAPOCA - ROMANIA, 03 - 14 JULY 2018





ABOUT IMO
 The International Mathematical Olympiad (IMO) is the largest, oldest and most prestigious scientific Olympiad for high school students. The history of IMO dates back to 1959, when the first edition was held in Romania with seven countries participating: Romania, Hungary, Bulgaria, Poland, Czechoslovakia, East Germany, and USSR. Since then, the event has been held every year (except 1980) in a different country. Currently, more than 100 countries from 5 continents participate. Each country can send a team of up to six secondary students or individuals who have not entered University or the equivalent, as of the date of celebration of the Olympiad, plus one team leader, one deputy leader, and observers if desired. During the competition, contestants have to solve, individually, two contest papers on two consecutive days, with three problems each day. Each problem is worth seven points. Gold, silver, and bronze medals are awarded in the ratio of 1:2:3 according to the overall results — half of the contestants receive a medal. In order to encourage as many students as possible to solve complete problems, certificates of honorable mention are awarded to students (not receiving a medal) who obtained 7 points for at least one problem.


domingo, 24 de junho de 2018

Course of Mathematical Analysis, Part 1, Vinogradov OL, Gromov - Курс математического анализа, Часть 1, Виноградов О.Л., Громов А.Л., 2009.


Course of Mathematical Analysis, Part 1, Vinogradov OL, Gromov AL, 2009
 The book is the first part of the course of mathematical analysis, read at the Faculty of Mathematics and Mechanics of the St. Petersburg State University. The volume and content of the first part roughly corresponds to the material traditionally included in the first semester of a five-semester or four-semester (with a separate semester course of the theory of functions of a complex variable) course. It includes the following sections: introduction, the theory of limits and continuous functions, the differential calculus of functions of one real variable, an indefinite integral.
LINK
http://www.mediafire.com/file/f0k9igg556qjp59/vinogradov-part1.pdf

sexta-feira, 22 de junho de 2018

Vinogradova IA, etc. Problemas y ejercicios en análisis matemático (parte 2). 1991 - Виноградова И. А. и др. Задачи и упражнения по математическому анализу (часть2). 1991


LINK
http://www.mediafire.com/file/0lfb7ys06a8r8cr/Vinogradova_2.pdf

Vinogradova Problemas y ejercicios en análisis matemático (parte 1). 1988-Виноградова И. А. и др. Задачи и упражнения по математическому анализу (часть1). 1988









Vinogradova IA, etc. Problemas y ejercicios en análisis matemático (parte 1). 1988 año. djvu, 416 p. 5.0 MB.
 La colección se compila sobre la base del curso de análisis matemático en el primer curso de la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Moscú y refleja la experiencia de la enseñanza del Departamento de Análisis Matemático. Consta de dos partes, correspondientes al primer y segundo semestre. En cada parte, los ejercicios computacionales y los problemas teóricos se seleccionan por separado. La primera parte incluye la construcción de bocetos de gráficos de funciones, cálculo de límites, cálculo diferencial de funciones de una variable real, problemas teóricos. La segunda parte es una integral indefinida, una integral definida de Riemann, un cálculo diferencial de funciones de varias variables y problemas teóricos. En los capítulos que contienen ejercicios computacionales, cada párrafo está precedido por instrucciones metodológicas detalladas. Se dan todas las definiciones utilizadas en esta sección, las formulaciones de los principales teoremas, la derivación de algunas relaciones necesarias, da soluciones detalladas a los problemas característicos y llama la atención sobre los errores que se encuentran con frecuencia. La mayoría de las tareas y ejercicios son diferentes de los problemas que figuran en el conocido libro de problemas de BP Demidovich. En ambas partes de la colección incluye aproximadamente 1800 ejercicios para cálculos y 350 problemas teóricos.
LINK
http://www.mediafire.com/file/g8u7ckat7f73ckb/Vinogradova-1.pdf